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We propose a theory to explain random behavior for the digits
in the expansions of fundamental mathematical constants. At
the core of our approach is a general hypothesis concerning the
distribution of the iterates generated by dynamical maps. On
this main hypothesis, one obtains proofs of base-2 normality —
namely bit randomness in a specific technical sense — for a col-
lection of celebrated constants, including �, log 2, �(3), and oth-
ers. Also on the hypothesis, the number �(5) is either rational or
normal to base 2. We indicate a research connection between
our dynamical model and the theory of pseudorandom number
generators.

1. INTRODUCTION

It is of course a long-standing open question whether

the digits of � and various other fundamental con-

stants are \random" in an appropriate statistical

sense. Informally speaking, we say that a number

� is normal to base b if every sequence of k con-

secutive digits in the base-b expansion of � appears

with limiting frequency b
�k. In other words, if a

constant is normal to base 10, its decimal expansion

would exhibit a \7" one-tenth of the time, the string

\37" one one-hundredth of the time, and so on. It

is widely believed that most, if not all, of the \fun-

damental" or might we say \natural" irrationals are

not only normal to base 10, but are absolutely nor-

mal, meaning they are normal to every integer base

b � 2. By \fundamental" or \natural" constants

here we include �, e, log 2,
p
2, the golden mean

� = (1 +
p
5)=2, the Riemann zeta function evalu-

ation �(3), and a host of others. In regard to alge-

braic numbers, one could further conjecture that ev-

ery irrational algebraic number is absolutely normal,

since there are no known counter-examples. Even

suspected (but not yet proven) irrationals, such as
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the Euler constant 
, are generally expected to be

absolutely normal.

It is well-known from measure theory that a \ran-

dom" real number is absolutely normal with proba-

bility one. In spite of this result, not a single fun-

damental constant has been shown to be normal to

base b for any b, much less for all bases simultane-

ously. Even the weaker assertion that every �nite

digit string appears in the expansion has not been

established, to our knowledge, for any fundamental

constant. We shall mention later some arti�cially

constructed, provably normal numbers; yet the sit-

uation with respect to fundamental constants has

remained bleak to the present day.

We discuss here a linkage between the normality

of certain constants and a certain kind of dynamical

mechanism. In a companion paper, we establish a

relationship between the dynamical picture and the

theory of pseudorandom number generators [Bailey

and Crandall 2001]. Our present theory is based on

the following general hypothesis:

Hypothesis A. Denote by

rn = p(n)=q(n)

a rational-polynomial function, p; q 2 Z[X]. As-

sume further that 0 � deg p < deg q, with rn non-

singular for positive integers n. Choose an inte-

ger b � 2 and set x0 = 0. Then the sequence

x = (x0; x1; x2; : : : ) determined by the iteration

xn = (bxn�1 + rn) mod 1 (1–1)

either has a �nite attractor or is equidistributed in

[0; 1).

We shall precisely de�ne \equidistributed" and \�-

nite attractor" shortly, intending for the moment

just to convey the spirit of this core hypothesis.

The condition 0 � deg p is simply a convenience,

to rule out the zero polynomial (on the mnemonic:

deg 0 = �1). Now, there is a striking consequence

of Hypothesis A, namely that digits of the expan-

sions of certain constants must be random in the

following sense:

Theorem 1.1. On Hypothesis A (that is, assuming its

validity), each of the constants �, log 2, and �(3)

is normal to base 2, and log 2 is normal to base 3.

Furthermore, on the same hypothesis , if �(5) is ir-

rational it too is normal to base 2.

The particular set of constants appearing in Theo-

rem 1.1 is merely representative, for as we shall see,

numerous other constants could also be listed.

If even one particular instance of Hypothesis A

could be established, the consequences would be re-

markable. For example, if it could be established

that the simple iteration given by x0 = 0 and

xn =
�
2xn�1 +

1

n

�
mod 1 (1–2)

is equidistributed in [0; 1), then it would follow that

log 2 is normal to base 2. In a similar vein, if it could

be established that the iteration given by x0 = 0 and

xn =
�
16xn�1+

120n2�89n+16

512n4�1024n3+712n2�206n+21

�
mod 1

(1–3)

is equidistributed in [0; 1), it would follow that � is

normal to base 16 (and, as we shall see, it would

follow easily that � is also normal to base 2).

The algorithmic motivation for our current treat-

ment is the recent discovery of a simple algorithm

by which one can rapidly calculate individual digits

of certain polylogarithmic constants [Bailey et al.

1997]. This BBP algorithm (named after Bailey, P.

Borwein and S. Plou�e) has already given rise to a

small computational industry of sorts. For example,

the quadrillionth binary digit of �, the billionth bi-

nary digit of log 2 and the hundred-millionth binary

digit of �(3) have been found in this fashion [Bailey

et al. 1997; Borwein et al. 2000; Broadhurst 1998;

Percival 2000]. Our intent here is not to present

new computational results, but instead to pursue

the theoretical implications of this algorithm.

We describe the BBP algorithm by way of exam-

ple. We start with the well-known formula

log 2 =

1X
k=1

1

k 2k
:

Now for any n � 1 the fractional part

(2n log 2) mod 1

gives precisely that part of the expansion of log 2

starting at location n + 1 inclusive in the binary

expansion of log 2. (Location 1 is the �rst binary

digit to the right of the \decimal" point.) We have
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(2n log 2) mod 1

=

� 1X
k=1

2n�k

k

�
mod 1

=

� nX
k=1

�2n�k mod k

k

�
mod 1 +

1X
k=n+1

2n�k

k

�
mod 1:

(1–4)

We have parsed this last expression explicitly to

indicate the algorithm in question: (1) compute each

numerator of the �rst sum (having k 2 [1; n]) us-

ing the well-known binary-ladder algorithm for ex-

ponentiation, reducing each intermediate product

modulo k; (2) divide each numerator by its respec-

tive k using ordinary 
oating-point arithmetic; (3)

sum the terms of the �rst series, discarding any in-

teger parts; (4) compute the second sum (typically

just a few terms are needed), and (5) add the two

sum results, again discarding the integer part. The

resulting fraction, when expressed in binary nota-

tion, gives the �rst few binary digits of log 2 begin-

ning at position n + 1. High-precision arithmetic

software is not required for these operations|ordi-

nary 64-bit or 128-bit 
oating-point arithmetic will

su�ce|and very little memory is required. A few

hexadecimal digits of log 2 beginning at the ten bil-

lionth position, which were computed using this for-

mula, are given in [Bailey et al. 1997].

In a similar manner, one can compute arbitrary

hexadecimal (or binary) digits of � by means of the

formula

� =

1X
n=0

1

16n

�
4

8n+1
� 2

8n+4
� 1

8n+5
� 1

8n+6

�
:

This can be done by simply writing this expression

as a sum of four in�nite series and then applying the

scheme described above for log 2 to each of these four

series [Bailey et al. 1997].

Our theoretical approach here is to analyze this

process of \digit extraction" to study the random-

ness of the digits produced. As we shall see, this in-

quiry leads into several disparate �elds of inquiry, in-

cluding algebraic number theory, chaotic dynamics,

ergodic theory, pseudorandom number generation,

probability and statistics. Some of these connec-

tions are explored in the companion paper [Bailey

and Crandall 2001] and in [Lagarias 2001].

2. NOMENCLATURE AND FUNDAMENTALS

We denote by b�c and f�g respectively the usual


oor and fractional-part extractions of a real �. In

general we have � = b�c + f�g, noting that the

fractional part is always in [0; 1). We can also say

f�g = � mod 1, which is convenient given our open-

ing remarks. We de�ne the norm k�k for � 2 [0; 1)

as k�k = min(�; 1��). With this de�nition, k���k
measures the shortest distance between � and � on

the unit circumference circle in the natural way. A

simple but useful rule that we will use in some of the

ensuing analysis is what we call the dilated-norm

rule: if 0 � � � 1=(2 kzk) then, because k�zk is now
bounded above by 1=2, we have k�zk = � kzk.
A base-b expansion, say

� = 0:�1�2�3 : : :

where each �j is an integer in [0; b � 1], is taken

to be unique for �. When competing expansions

exist, as in decimal 0:1000 : : : = 0:0999 : : :, we take

the variant with trailing zeros. Now consider the

frequency (when it exists) with which a given �nite

digit string (d1d2 : : : dk) appears in �. This is taken

to be the limit as N !1 of the number of instances

where �j = d1, �j+1 = d2, . . . , �j+k�1 = dk (for j

ranging from 1 to N+1�k), divided by N . We now

introduce a standard de�nition from the literature

[Kuipers and Niederreiter 1974, pp. 69, 71].

Definition 2.1. A real number � is said to be normal

to base b if every �nite string of k digits appears in

the base-b expansion of � with well-de�ned limiting

frequency b
�k. A number that is normal to every

integer base b � 2 is said to be absolutely normal.

We remarked earlier that almost all numbers are ab-

solutely normal. This is intuitively evident, since a

base-b expansion of � 2 [0; 1) corresponds to an in�-

nite game of 
ipping a fair, b-sided die, and thus we

expect every k-long string of symbols to appear with

the expected frequency b
�k, for almost all � (i.e.,

with probability one). For our present purposes,

it will be useful to also adopt a second, somewhat

weaker criterion of digit randomness, namely:

Definition 2.2. We say a number � is digit-dense to

base b if every �nite string of k consecutive base-b

digits appears in the base-b expansion of �.
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This de�nition implies that if � be digit-dense to

base b every �nite string appears not just once but

in�nitely often. This follows immediately upon the

simple observation that every �nite string is con-

tained in an in�nite number of longer �nite strings.

Analogous to the notion of a digit-dense expan-

sion is the notion of a dense sequence in [0; 1). A

dense sequence visits every nonempty subinterval

[c; d) at least once (and hence in�nitely often). A

stronger notion is equidistribution, to which we now

turn. For a sequence x = (x0; x1; : : : ) of real num-

bers in [0; 1), consider the counting function

C(x; c; d;N) = #
�
xj 2 [c; d) : j < N

	
:

This C function gives the count of the �rst N el-

ements of the sequence x that lie in the interval

[c; d). Then the property of equidistribution is that

elements of x lie in subregions of [0; 1) with a fair

frequency, in the following exact sense:

Definition 2.3. A sequence x in [0; 1) is said to be

equidistributed if for any 0 � c < d < 1 we have

lim
N!1

C(x; c; d;N)

N
= d� c:

This de�nition is identical to that of \uniform distri-

bution modulo 1", as given in [Kuipers and Nieder-

reiter 1974, p. 1].

In our development we shall need one (out of sev-

eral) existing theorems on equidistribution, namely

the following [Kuipers and Niederreiter 1974, p. 3],

where we have added the simple extension that cov-

ers the weaker condition of density along with equi-

distribution:

Theorem 2.4. Let (xn) be equidistributed (alterna-

tively , dense). If a sequence (yn) has the property

that fyng ! C (constant C) as n ! 1, then the

sequence (fxn + yng) is likewise equidistributed (al-

ternatively , dense). In particular , if yn ! 0, then

(fxn+ yng) is equidistributed (alternatively , dense).

There is a simple but beautiful connection between

normality of a number and equidistribution of rele-

vant fractional parts [Kuipers and Niederreiter 1974,

p. 70]:

Theorem 2.5. A number � is normal to base b if and

only if the sequence (fbn�g : n = 1; 2; 3; : : : ) is equi-

distributed .

Corollaries of these last two theorems can be useful,

even amusing. A typically curious side result is this:

log 2 is normal to base 2 if and only if the sequence

(flogFng) is equidistributed, where Fn = 22
n

+ 1

are the celebrated Fermat numbers. This result fol-

lows immediately by observing that limn(logFn �
2n log 2) = 0.

It is straightforward to prove the following result,

which will enjoy application to certain speci�c real

numbers:

Theorem 2.6. A number � is digit-dense to base b if

and only if the sequence (fbn�g : n = 1; 2; 3; : : : ) is

dense in [0; 1).

Proof. Any interval (r; s) in [0; 1) contains a base-b

subinterval I of the form

[0:d0d1 : : : dk�1; d0d1 : : : (dk�1+1));

where the dj represent base-b digits and dk�1 < b�1.
If one assumes that � is digit-dense, then fbn�g vis-
its the interval I at least once, and thus visits (r; s)

at least once. Conversely, if one assumes that the

sequence (fbn�g) is dense in [0; 1), then any base-b

string appears at least once, so that � is digit-dense

to base b. �

The theory of normal numbers is deep, and has a

long history; we mention here just one of the deeper

results relevant to our present treatment [Kuipers

and Niederreiter 1974, p. 72]:

Theorem 2.7. Assume � is normal to base b, and

denote by r a nonzero rational number . Then r� is

normal to base b; moreover � is also normal to any

(integer) base c = b
r.

The �rst part of this theorem tells us that if we es-

tablish the normality of say (r=s)�(5) for integers

r; s, then �(5) is automatically normal. The sec-

ond part tells us, for example, that if a number be

normal to base 16 (i.e., every hexadecimal string

appears with proper frequency), then the number

is also normal to base 2, or for that matter to any

power-of-two base. The wording of this latter part

is critical: there exist numbers normal to some base

b but not to some other base a that is not a ratio-

nal power of b [Cassels 1959; Kuipers and Nieder-

reiter 1974]. For example, the standard Cantor set

has members that are normal to base 2, yet none of

its members is normal to base 3. Moreover, there
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are results on the class of \absolutely abnormal"

numbers, meaning numbers not normal to any base.

Any rational number is of this class, of course, yet

the class is uncountable, and there exist proven,

constructive examples of absolutely abnormal irra-

tionals [Martin 2000].

It is a celebrated theorem of Weyl that � is ir-

rational if and only if the sequence (fn�g : n =

1; 2; 3; : : : ) is equidistributed [Kuipers and Niederre-

iter 1974, p. 8]. Note, however, that in the present

treatment we are not concentrating on multipliers

n; rather we need the much sparser multiplier set

of powers bn in order to analyze base-b digits per

se. For reader convenience we summarize thus: the

sequence (fbn�g) is dense (alternatively, equidistrib-
uted) as � is respectively digit-dense to base b (al-

ternatively, normal to base b).

We have mentioned the abject paucity of normal-

ity proofs for fundamental constants. The interest-

ing but arti�cial Champernowne constant, which is

the number

C10 = 0:123456789101112131415 : : :

obtained by concatenation of the positive integers, is

known to be normal to base 10, but existing proofs of

even this are nontrivial [Champernowne 1933; Niven

1956]. One can, of course, construct a binary or

ternary equivalent of this constant, by concatenat-

ing digits in such bases. In a separate treatise we

touch upon the theory of continued fractions, not-

ing for the moment that the Champernowne con-

stant has some gargantuan elements in its simple

continued fraction, as can be seen by simple numer-

ical experiments. Another example of a concoction

known to be normal to base 10 is the Copeland{

Erd}os number 0:23571113171923 : : : [Copeland and

Erd}os 1946], in which the primes are concatenated;

this concatenation game can be generalized yet fur-

ther to more general integer sequences for the digit

construction.

Theorem 2.8. If � be normal to base b then � is digit-

dense to base b. If � be digit-dense to some base b

then � is irrational .

Proof. Normality clearly implies the digit-denseness,

by 2.1. If one assumes that � is digit-dense to some

base b, then � cannot be rational, since it is well-

known that the base-b expansion of any rational

number repeats with a �nite period after some initial

digit string. This peridocity rules out the existence

of arbitrary strings. �

Now we turn to some preliminary dynamical notions

for the iterates involved in Hypothesis A. First o� we

owe the reader a de�nition of \�nite attractor," and

a related notion which we call \periodic attractor":

Definition 2.9. A sequence x = (xn) in [0; 1) is said

to have a �nite attractor W = (w0; w1; : : : ; wP�1) if

for any " > 0 there is some K = K(") such that

for all k � 0, we have kxK+k � wt(k)k < ", for some

function t(k), with 0 � t(k) < P .

Definition 2.10. A sequence x = (xn) in [0; 1) is said

to have a periodic attractorW = (w0; w1; : : : ; wP�1)

if for any " > 0 there is some K = K(") such that

for any k � 0, we have kxK+k � wkmodPk < ".

Two useful results along these lines are:

Theorem 2.11. Assume a sequence (yn) has the prop-

erty that yn ! C (with C constant) as n ! 1.

Then a sequence (xn) in [0; 1) has a �nite attrac-

tor (alternatively , a periodic attractor) if and only

if (fxn + yng) does .
Theorem 2.12. The sequence (xn), as de�ned for Hy-

pothesis A, has in�nitely many distinct elements ;

thus this set of distinct elements has at least one

limit point .

Proof. Theorem 2.11 follows immediately from the

"-restriction in De�nitions 2.9 and 2.10.

For Theorem 2.12, Consider the set D of all pos-

sible di�erences kxn � bxn�1k. If there are �nitely

many distinct elements in the full sequence (xn),

then D is a �nite set so must have a least element.

But the perturbation term rn is arbitrarily close (but

not equal) to zero for su�ciently large n, which is a

contradiction. Thus (xn) has in�nitely many dis-

tinct elements, and it follows by elementary real

analysis that these distinct elements have at least

one limit point. �

We now show that in certain cases of interest here,

the two notions of attractor set introduced above

coincide:

Theorem 2.13. Let � be real and assume an integer

base b � 2. If the sequence x = (fbn�g) has a �nite
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attractor W , then W is a periodic attactor , and the

structure of the attractor W is necessarily

W = (w0; fbw0g; fb2w0g; : : : ; fbP�1w0g);
for some period P . Moreover each wi 2 W is ratio-

nal .

Proof. Let W = fw0; w1; : : : ; wP�1g be the �nite at-

tractor for x. Let d = min0�i;j<P (kwi � wjk), and
choose

" <
d

4b
:

Let W" be the set of all z in [0; 1) such that kz �
wik < " for some 0 � i < P . Then we know that

there is some K 0(") such that for all k > K
0 we have

xk 2 W". Let K be the �rst k > K
0, such that

kxk � w0k < ". Then

kxK+1 � bw0k = kbxK � bw0k = bkxK � w0k
< b" < d=4;

where the second equality follows from the dilated-

norm rule enunciated at the start of this section.

It follows that xK+1 is within b" of fbw0g, and sim-

ilarly xK+k+1 is within b" of fbw0g whenever xK+k

is within " of w0, which must occur in�nitely often.

Since there can be at most one element of the at-

tractor set W in the region of size d=4 about fbw0g,
and since the choice of " above was arbitrary, we

conclude that bw0 must be the element ofW in that

region. We can for notational convenience assume

that w1 = fbw0g. Then kxK+1 � w1k < ", and the

argument can be repeated to show that xK+2 is close

to w2 = fb2w0g, etc., and �nally that xK+P�1 is close

to wP�1 = fbP�1w0g. It then follows that the mem-

ber of W which xK+P is close to must be w0, since

otherwise the " region around w0 would never be

visited again by the x sequence and thus w0 could

not be a member of the attractor set. Therefore

W = (w0; fbw0g; : : : ; fbP�1w0g), and W is a peri-

odic attractor for the x sequence. Rationality of the

attractor points is demonstrated by noting the peri-

odicity condition w0 = fbPw0g, which implies that

for some integer m we have w0 = m=(bP � 1), and

similarly for the other wi 2W . �

Theorem 2.14. If the sequence (xn) as de�ned for Hy-

pothesis A has a �nite attractor W , then W is a

periodic attractor , and each element of W is ratio-

nal .

Proof. Here the sequence x is given by x0 = 0, and

xn = bxn�1 + rn, with rn ! 0 (since deg p < deg q).

Let W = fw0; w1; : : : ; wP�1g be the �nite attractor

for x. Let d = min0�i;j<P (kwi � wjk), and choose

" < d=(4b + 4). Let W" be the set of all z in [0; 1)

such that kz � wik < " for some 0 � i < P . Then

we know that there is some K 0(") such that for all

k > K
0 we have xk 2 W" and jrkj < ". Let K be

the �rst k > K
0, such that kxk � w0k < ". We then

have (again we use the dilated-norm rule from the

start of the present section)

kxK+1 � bw0k = kbxK + rK+1 � bw0k
� bkxK � w0k+ " < (b+ 1)" < d=4:

The remainder of the proof of this result follows the

second paragraph of the proof of Theorem 2.13. �

Now we are prepared to establish one �nal, impor-

tant result for this stage of the analysis:

Theorem 2.15. The sequence (fbn�g) has a �nite at-

tractor if and only if � is rational .

Proof. Assume that the sequence (fbn�g) has a �nite
attractor. By Theorem 2.13 it then has a periodic

attractor. In De�nition 2.10 let K be the index cor-

responding to " = 1=(4b), and set h = jxK � w0j.
Suppose h > 0. Then let m = blogb("=h)c, and note

that bmh < " < b
m+1

h < b" < 1=4. Thus we can

write (once again using the dilated-norm rule)

kxK+m+1 � wm+1modP k = kbm+1
xK � b

m+1
w0k

= b
m+1kxK � w0k

= b
m+1

h > ":

But this contradicts De�nition 2.10. Thus we con-

clude that h = 0, so that xK+k = wkmodP for all k �
0. In other words, after at most K initial digits, the

base-b expansion of � repeats with period P , so that

� is rational. As for the converse, � = p=q rational

implies the sequence (bnp=q) = (((pbn) mod q)=q) is

periodic, having in fact the period 1 for � = 0 and,

for p=q in lowest terms, the period of the powers of

b modulo q. �

3. THE DYNAMICAL PICTURE

Before giving a proof for Theorem 1.1, we prove:

Theorem 3.1. Given p; q 2 Z[X], with q having no

positive integer zeros and 0 � deg p < deg q, and
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given the integer b � 2, de�ne a real number � via

a generalized polylogarithm series

� =

1X
k=1

1

bk

p(k)

q(k)
:

Then � is rational if and only if the sequence (xn),

where

xn =

�
bxn�1 +

p(n)

q(n)

�
mod 1

has a �nite (alternatively , periodic) attractor .

Proof. Theorem 2.15 we know that the sequence

(fbn�g) has a periodic attractor if and only if � is

rational. Following the BBP strategy, we can write

fbn�g =
� nX

k=1

b
n�k

p(k)

q(k)
+

1X
k=n+1

b
n�k

p(k)

q(k)

�
mod 1

= (xn + tn) mod 1;

where x is de�ned by x0 = 0 and the recursion

xn = bxn�1 +
p(n)

q(n)
;

with the \tail" sequence t given by

tn =

1X
k=1

1

bk

p(k + n)

q(k + n)
:

Provided that deg p < deg q as in Hypothesis A,

given any " there is some n such that����p(k + n)

q(k + n)

���� < "

for all k � 1. For such n, we have

jtnj < "

X
k�1

b
�k = "=(b� 1) � ":

Thus tn converges to zero as n ! 1. Hence it

follows from Theorem 2.11 that (xn) has a periodic

attractor if and only if � is rational. �

Theorem 3.1 does not depend on Hypothesis A; we

merely use the stated conditions of Hypothesis A in

the exposition.

Proof of Theorem 1.1. The constants �, log 2 and

�(3) are known to be irrational. An in�nite series

formula of the form required in Theorem 3.1 exists

for each of them (see equations (5{1){(5{4)). The

conclusions of Theorem 1.1 (assuming Hypothesis

A) follow immediately. �

Further, as we will see in the next section, the con-

clusions of Theorem 1.1 apply to quite a few other

generalized polylogarithmic constants.

We now lay out some preliminary observations on

the kinds of chaotic dynamical maps under discus-

sion. Equation (1{2) (see also (5{1)) gives the se-

quence x = (xn) for log 2: x0 = 0 and

xn = 2xn�1 +
1

n
:

The �rst few iterates are�
0; 0; 1

2
;
1

3
;
11

12
;
1

30
;
7

30
;
64

105
;
289

840
; : : :

�
:

We remark that these numbers are precisely the (ra-

tional) coe�cients in the Taylor expansion of

g(t) =
� log(1� t)

1� 2t
;

reduced modulo 1. However, this observation evi-

dently brings nothing new. Similarly, the dynam-

ical log 2 iteration can be modeled in terms of a

\matrix-factorial" system. In fact, if we decompose

xn = fn=gn then the iteration takes the form

n!

�
fn

gn

�
=

�
2n 1

0 n

�
!

�
0

1

�

where the matrix-factorial is simply the left-right

product of matrices with internal parameter n run-

ning down to 1, as with integer factorials. Though a

theory of matrix-factorials might bring some insight,

such algebra may merely be a symbolic reformula-

tion.

Suppose one computes the binary sequence yn =

b2xnc, where (xn) is the sequence associated with

log 2 (see above). Assuming Hypothesis A, Theo-

rem 1.1 tells us, in e�ect, that (yn) eventually agrees

quite well with the true sequence of binary digits of

log 2|so much so that properties such as density

and equidistribution, if possessed by one sequence,

are possessed by the other. In computations that

we have done, we have found that the sequence (yn)

disagrees with 15 of the �rst 200 binary digits of

log 2, but in only one position over the range 5000

to 8000.

For the constant �, the associated sequence is

given by x0 = 0 and xn as in (1{3); see also equa-

tion (5{2). As with log 2, one can compute the hex-

adecimal digit sequence yn = b16xnc. When this

is done, a remarkable phenomenon is observed: the
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sequence (yn) appears to perfectly (not just approx-

imately) produce the hexadecimal digits of �. We

have computed over 100,000 hexadecimal digits us-

ing this recursion, and have found no discrepancies

with the true hexadecimal digits of �.

Conjecture 3.1. The sequence (b16xnc), where (xn) is
the sequence of iterates in the above dynamical map

for �, yields the correct hexadecimal expansion. In

other words , the ignored tail terms never change a

digit .

Evidently this phenomenon arises from the fact that

in the sequence here associated with �, the perturba-

tion term rn is summable, whereas the correspond-

ing expression for log 2, namely rn = 1=n, is not

summable. In particular, the term tn of the tail se-

quence for � is given by

1X
k=n+1

120k2 � 89k + 16

16k�n(512k4 � 1024k3 + 712k2 � 206k + 21)
;

which is approximately equal to the �rst summand

(for k = n+ 1); we have

1X
n=1

tn � 0:01579 : : : :

This �gure (multiplied by 16) can be thought of as

an \expected value" of the total number of base-16

digit errors likely to be observed in the recursive se-

quence for �. The small value indicates it is unlikely

that any carries or other errors will be observed.

The comparable �gure for log 2 is in�nite, indicat-

ing that discrepancies can be expected to appear

inde�nitely.

4. REMARKS ON HYPOTHESIS A

Now we turn to the question: \what motivates Hy-

pothesis A in its particular form?" One may wonder

to what extent the conditions of the hypothesis, and

perforce Theorem 1.1, can be relaxed. For exam-

ple, Hypothesis A allows only rational iterates (xn).

Consider again the dynamical sequence associated

with log 2, namely the sequence given by x0 = 0,

perturbation rn = 1=n, and recursion

xn = 2xn�1 +
1

n

(see equations (1{1) and (5{1)). Now other rational

choices of x0 may well result in an equidistributed se-

quence (xn). However, if one starts with x0 set equal

to the irrational number 1� log 2 = 0:3068 : : :, then

the sequence (xn) converges to the single limit point

zero, so that the full sequence (xn) is in this case not

even dense, much less equidistributed. This fact un-

derscores the essentially chaotic nature of recursions

of this form|an extreme sensitivity to initial con-

ditions is de�nitely present.

Along such lines, suppose that the class of per-

turbation terms rn in Hypothesis A were enlarged

to include expressions such as rn = n=2n
2�n, which

is not, of course, a rational-polynomial function. It

turns out that in this case the associated constant,

namely

� =

1X
n=1

n

2n2
;

is digit-dense to base 2 and hence irrational, yet not

normal to base 2. This and some more general con-

stants of the form
P

P (n)=2Q(n) with P;Q polyno-

mial and 0 < degP < degQ, are discussed in our

separate paper [Bailey and Crandall 2001].

One might guess that it is the very fact of rapid

decay in rn = n=2n
2�n that causes a nonequidistrib-

uted sequence of dynamical iterates. But this line of

thought is imperfect. Rapid decay can be expected

(it is di�cult to be rigorous here) to allow, in many

cases, equidistribution of the iterates. One attrac-

tive example is

xn = 4xn�1 +
1

(2n)!

�
4n+ 1

4n+ 2

�
;

whose equidistribution mod 1 would imply the base-

4 normality of the transcendental 1=
p
e; while an

algebraic constant arises from the iterates

xn = 4xn�1 +
(2n� 3)!!

n!
;

whose equidistribution mod 1 would establish base-

4 normality of the constant 1 � 1=
p
2 and hence

that of
p
2 itself (by Theorem 2.5, � normal implies

that each of �� � 1 is normal). Given such exam-

ples of rapidly decaying perturbations, it is perhaps

amusing that, evidently, one still cannot attempt to

associate very rapidly decaying perturbation func-

tions with normal numbers. Some of the (perhaps
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likely to be) abnormal numbers described in [Martin

2000], such as the Pomerance number

P =

1X
n=1

1

n!n!

can of course be generated on the basis of extremely

rapidly decaying perturbation functions.

Again on the subject of the decay rate of pertur-

bation, consider that the binary Champernowne

C2 = 0:11011100101110111 : : : 2;

which is known to enjoy base-2 normality, can be

written in the intriguing form

C2 =

1X
n=1

1

2n
rn =

1X
n=1

1

2n
n

2f(n)

where the indicated exponent is

f(n) =

nX
k=1

blog2 kc:

Thus the decay rate of the perturbation rn is slightly

faster than exponential, showing that at least this

(admittedly arti�cial) constant C2 has the normal-

ity property together with a decay more rapid than

polynomial.

Thus the decay rate of the dynamical perturba-

tion function rn seems to be somewhat irrelevant.

Still, if we could establish some results in regard to

the character of dynamical sequences for certain per-

turbation functions outside the class of Hypothesis

A, a beautiful vista could emerge. As just one ex-

ample of an interesting departure from Hypothesis

A, said departure involving a slowly decaying per-

turbation function, consider the following expansion

for the Euler constant [Beeler et al. 1972, item 120,

p. 55]:


 � 1

2
=

1X
k=1

1

2k+1

�
�1 +

k�1X
j=0

�
2k�j + j

j

��1�
:

Here the relevant perturbation function is rk =

(1=2)(�1+P)k and exhibits a slow decay (evidently:

rn � 1=
p
n). Needless to say, any results on the dis-

tribution of the corresponding dynamical iterates

would have application to the study of the still-

mysterious 
.

5. GENERALIZED POLYLOGARITHM FORMS

We now discuss some speci�c examples of interesting

constants belonging to the class of numbers relevant

to Hypothesis A.

The BBP algorithm for resolving isolated digits of

a constant works for constants de�ned by what could

be called generalized polylogarithm forms. It turns

out that the forms of interest can all be described

as superpositions of the classical Lerch{Hurwitz zeta

function, itself de�ned as

L(s; z; �) =

1X
n=0

z
n

(n+ �)s
;

A special instance is the standard polylogarithm Lis
de�ned by

Lis(z) =

1X
n=1

z
n

ns
= zL(s; z; 1);

for which a considerable literature has sprung over

the years, notably in regard to integer indices s. To

unify our approach to generalized polylogarithms,

we next cite three expansion forms, each of which

has appeared in the literature. The \rational-poly-

nomial" or R-form is the generalized polylogarithm

value

R(b; p=q) =

1X
m=0

p(m)

q(m)

1

bm

for polynomials p; q. The notation R0(b; p=q) will be

used to denote this expression with the summation

starting at m = 1. (Note that R0 is the entity that

�gures naturally into Theorem 3.1 and accordingly

into the proof of Theorem 1.1.) Then there is what

we shall call a \periodic" or P -form,

P (s; b; d; A) =

1X
n=0

1

bn

dX
c=1

Ac

(dn+ c)s
;

where A = (Ac) is a �nite sequence of d elements.

A third form is what we shall call the \Broadhurst"

or B-form [Broadhurst 1998]:

B(s; b; �; �a) =

1X
n=1

1

bb(n+1)�c

an

ns
;

where �a = (an) is an in�nite periodic sequence and

� is positive real.
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It is evident that these functions have at least

some interrelations; for example when s is an integer

we have

Lis

�1
b

�
= R

0(b; 1=ns) =
1

b
R(b; 1=(n+ 1)s)

=
1

b
P (s; b; 1; (1)) = bB(s; b; 1; (1));

where here and elsewhere (a1; a2; : : : ; aP ) denotes a

periodic sequence with indicated pattern. However,

it is an important observation with respect to our

dynamical model that the R;P;B forms are well-

connected even for very general parameters, in the

following manner:

� We have in general

R

�
b;
p(n)

q(n)

�
= bR

0

�
b;
p(n� 1)

q(n� 1)

�
:

� A P -form can often be converted to an R-form.

In particular, when s is a positive integer and

the A sequence is nonvanishing, one can combine

fractions in the P de�nition to produce a suitable

rational-polynomial multiplier p=q in the R de�-

nition and this procedure gives rise to an admis-

sible perturbation rn = p(n)=q(n) for Hypothesis

A.

� Conversely, for p; q 2 Z[X] one can often split

easily into partial fractions, to arrive at a P -form.

Thus in many circumstances of interest P and R

are interchangeable forms.

� When � = e=f is rational the B-form can be cast

as a P -form, via the basic relation

B(s; b; �; �a) =

1X
n=0

1

bne

nX
g=1

anf+g

(nf + g)s bb(g+1)e=fc
:

� The connection back to the Lerch{Hurwitz func-

tion is best seen via the P -form; in fact,

P (s; b; d; A) = d
�s

dX
c=1

AcL

�
s;
1

b
;
c

d

�
;

and this relation embodies the superposition ef-

fect to which we have alluded.

We now establish a compendium of generalized

polylogarithm values, with a view to application of

Hypothesis A. We have, as mentioned in Section 1,

the classical expansion of log 2 = Li1(1=2):

log 2 =

1X
n=1

1

n2n
= R

0(2; 1=n) (5–1)

With some simple algebraic manipulations, sim-

ilar base 2 series, suitable for this analysis, can be

given for log 3, log 5, log 7, log 11, log 31 and other

logarithms [Bailey et al. 1997]. Less trivial but well

known higher-order polylogarithm evaluations in-

clude

�
2 � 6 log

2
2 = 12R0(2; 1=n2);

�2�2 log 2 + 4 log
3
2 + 21�(3) = 24R0(2; 1=n3):

One of the historical driving relations for the orig-

inal BBP algorithm development was the following

[Bailey et al. 1997], for which we have intentionally

written out some conversion steps to exemplify once

again the interconnection of forms:

� = 8B
�
1; 2; 1

2
; (1; 0; 0;�1;�1;�1; 0; 0)

�

= 8

1X
n=1

1

n

1

2b(n+1)=2c
(1; 0; 0;�1;�1;�1; 0; 0)

=

1X
n=0

1

16n

�
4

8n+1
� 2

8n+4
� 1

8n+5
� 1

8n+6

�

= P
�
1; 16; 8; (4; 0; 0;�2;�1;�1; 0; 0)

�
= R(16; p=q); (5–2)

with the rational polynomial here de�ned as

p(n)

q(n)
=

47 + 151n+ 120n2

15 + 194n+ 712n2 + 1024n3 + 512n4
:

The sequence for � given as (1{3) is obtained via

the above translation rule for converting R! R
0.

Moreover, this simple, base-16 prescription for �

is not unique|one also has the following equality,

�rst discovered by Ferguson and Hales [1997] and

independently by Adamchik and Wagon [1997]:

� = 4B
�
1; 2; 1

2
; (1; 1; 1; 0;�1;�1;�1; 0)

�

This formula may be written in the P -form notation

as

� = 1

4
P
�
1; 16; 8; (8; 8; 4; 0;�2;�2;�1; 0)

�
:
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Actually, various expansions for � arise from the

following formal identity, valid for t 2 (0; �) [Cran-

dall 1996]:

�

2
� t =

1X
n=1

cosn t
sin(nt)

n
:

One may use rational multiples of � such as t = �=3

to achieve expressions such as

� = 2
p
27B(1; 2; 1; (1; 1; 0;�1;�1; 0))

=
p
27R(64; p=q);

where now the rational polynomial is

p(n)

q(n)
=

193+1188n+2097n2+1134n3

320+3744n+14112n2+20736n3+10368n4
:

This t = �=3 value thus yields a BBP scheme for

extraction of individual base-64 digits; and perforce,

includes �
p
3 in the galaxy of normal numbers un-

der Hypothesis A. The use of t = �=4 gives a pre-

vious expansion of this section. The choice t = �=5

gives a peculiar expansion. Using the exact relation

cos(�=5) = �=2 with � = (1 +
p
5)=2 the golden

mean of antiquity, we �nd

� =
55=4

3
p
�

1X
n=1

1

n

�
�

2

�n
(1; � ; � ; 1; 0;�1;�� ;�� ;�1; 0):

Fascinating as this relation may be, it falls into

the category of an irrational-base expansion (i.e., the

BBP base would be 2=� = 1:23606 : : :), and applica-

tions if any are unclear. Similarly, choosing t = �=6

results in a base- 4
3
expansion, which likewise is of

dubious bene�t.

The more peculiar base expansions point to the

open question of whether a BBP implementation for

� can be performed in the culturally important base

10. The best we can seem to do in this regard was

uncovered during the present work, and runs as fol-

lows. Choosing parameter t = cos�1(1=
p
20) one

can derive

�

2
= sin�1 9

10
+
p
19

1X
n=1

Dn�1
1

n10n
;

with initial coe�cients D0 = D1 = 1, and the rest

determined via the recurrence Dn+1 = Dn � 5Dn�1.

It is intriguing that a variant of the original BBP

algorithm can be fashioned on the idea that the Dn

comprise a Lucas sequence, and as is known, evalua-

tions of sequence elements mod n can be e�ected via

exponential-ladder methods. Incidentally, there are

other expansions that do involve the decimal base

in a simpler fashion. One is

log 9

10
= �

1X
n=1

1

n10n
;

which admits straightforward computation of iso-

lated decimal digits [Bailey et al. 1997]. Thus, on

Hypothesis A, log 9

10
is normal to base 10, since it

is known to be irrational. More exotic base-10 rela-

tions include

log 1111111111

387420489
=

10�8
X
n=0

1

1010n

� 108

10n+1
+

107

10n+2
+� � �+ 1

10n+9

�
;

which we found during the course of the present re-

search, as explained later.

In regard to � expansions, it is also known that

�
2 = 32B(2; 2; 1

2
; (1;�1;�1;�2;�1;�1; 1; 0));

and

�
2 = 9

8
P (2; 16; 6; (16;�24;�8;�6; 1; 0));

and thus one may address �2 itself within the theory.

We should add that a base 3 series is known for �2,

due to Broadhurst [1999]:

�
2 = 2

27
P
�
2; 729; 12;

(243;�405;�81;�27;�72;�9;�9;�5; 1)
�
:

Similar high-order generalizations can be given for

log2 2 and for the Catalan constant G, as in

G� 1

8
� log 2 = B

�
2; 2; 1

2
; (1; 1; 1; 0;�1;�1;�1; 0)

�
:

Broadhurst [1998] also developed forms for �(3) and

�(5), for example

�(3) = 48

7
B
�
3; 2; 1

2
; (1;�7;�1; 10;�1;�7; 1; 0)

�
+ 32

7
B
�
3; 2; 3

2
; (1; 1;�1;�2;�1; 1; 1; 0)

�
:

However, recall the convenient result that any su-

perposition of B functions (with appropriate, ratio-

nal \�" parameters and integer power arguments s)

can be cast as a single R function. With this in mind

we achieve, after suitable symbolic manipulation, a

base-4096 expansion

�(3) = R(4096; p=q); (5–3)

where the speci�c rational function is de�ned by the

formidable expression
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7p(m)

8q(m)
=

3

(1+24m)3
� 21

(2+24m)3
+

12

(3+24m)3
+

15

(4+24m)3
� 3

4(5+24m)3
+

3

2(6+24m)3

+
3

8(7+24m)3
� 3

2(9+24m)3
� 21

16(10+24m)3
� 3

32(11+24m)3
� 3

4(12+24m)3
� 3

64(13+24m)3

� 21

64(14+24m)3
� 3

16(15+24m)3
+

3

256(17+24m)3
+

3

128(18+24m)3
� 3

512(19+24m)3

+
15

256(20+24m)3
+

3

128(21+24m)3
� 21

1024(22+24m)3
+

3

2048(23+24m)3
:

For �(5) one ends up working with yet a larger base (b = 260):

�(5) = 18432

62651
B(5; 2; 1

2
; (31;�1614;�31;�6212;�31;�1614; 31; 74552))

+ 14336

62651
B(5; 2; 3

2
; (173; 284;�173;�457;�173; 284; 173;�111))

� 1511424

62651
B(5; 2; 5

2
; (1; 0;�1;�1;�1; 0; 1; 1))

= R(260; p=q); (5–4)

for a certain rational perturbation p; q with deg p = 590 and deg q = 595. Nevertheless these machinations

reveal that �(3) and �(5) can be written in terms of R-function values appropriate to Hypothesis A.

No eventually periodic sequence can be uniformly distributed mod 1, so this case must be treated sep-

arately in Hypothesis A. So one might ask under what conditions, if any, on p(n), q(n), and b � 2 isP
p(n)=q(n)b�n rational? We now describe two di�erent classes of generalized series that turn out to be

rational.

The �rst case can be called the \telescoping" phenomenon. For example, any sum of the form

1X
n=1

1

bn

�
b
m

n
� 1

n+m

�
;

where m is a �xed positive integer, has a rational value due to elementary telescoping. For such sums,

the corresponding dynamical iterations of Hypothesis A, with perturbation function p(n)=q(n) = (bm(n +

m)�n)=(n(n+m)), result in a periodic attractor. One could fashion a theory in which telescoping amounted

to the formal relation

0 =

I
C

b
�z p(z)

q(z)
dz;

where C is a contour starting at +1 + i, circling the origin counterclockwise, and ending at +1 � i.

Unfortunately, this kind of formalism is only e�ective for telescoping per se. There is a di�erent kind

phenomenon that yields rational R-forms.

This second, and more profound class of exceptions we call the \Ferguson anomalies," involving a fasci-

nating and evidently rare phenomenon. These anomalies are also known as \Zagier zeros," which involve

polylogarithmic ladders [Broadhurst 2000]. We only know of a few genuinely di�erent examples (note that

mere translation of indices can turn one example, say a zero sum, into a rational sum giving nothing new).

Here are three, where we write out the explicit partial fraction decomposition for the �rst example only:

0 = P (1; 16; 8; (�8; 8; 4; 0; 8; 2;�1; 0))

=

1X
n=0

1

16n

� �8
8n+ 1

+
8

8n+ 2
+

4

8n+ 3
+

8

8n+ 5
+

2

8n+ 6
� 1

8n+ 7

�
;

0 = P (1; 64; 6; (16;�24;�8;�6; 1; 0));
0 = P

�
1; 4096; 24; (0; 0; 0; 0;�256; 256; 128; 0; 128;�128;�64;�64; 0;�16; 0; 24; 4;�4;�2;�2;�2;�3; 1; 0)

�
:
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David Broadhurst [2000] has enumerated several

other anomalies of this type, some involving base 3.

The iterates for the above anomalies, with their

rational polynomials as exhibited, are rapidly at-

tracted to the single limit point zero. If one triv-

ially translates such anomalous sums (for example

by leaving o� the leading term of the �rst case above,

which results in the sum 97=105) then the dynami-

cal iterates will become pseudoperiodic in the long

run (in this example, the attractor set has 12 points,

since 2 has order 12 modulo 105). In summary, un-

der Hypothesis A, our generalized polylogarithmic

constants tend to be either normal or rational, the

latter instance covering the telescoping and Fergu-

son anomalies.

During the course of this work, and due mainly to

theoretical attempts to resolve the Ferguson anoma-

lies, we developed a procedure for analyzing cer-

tain generalized polylogarithms. Some of our results

echo formulae found in the original BBP-algorithm

work [Bailey et al. 1997] but tend to lead one into

di�erent research directions, for example into sym-

bolic as opposed to numerical processing. To convey

an idea of the kind of new relation we have in mind,

we give some examples:

tan�1 1

2
=

1

8

1X
n=0

16�n
� 4

4n+ 1
� 1

4n+ 3

�
;

which is not especially profound| it is the way this

was derived that may be of interest. Then we have

log 2 = 2

27

1X
n=0

81�n
� 9

4n+ 1
+

1

4n+ 3

�
;

which conveniently enough will establish, on Hy-

pothesis A, that log 2 is normal to base 3. Alter-

natively, such a base-3 result can be gleaned from

the simple formula

log 2 = 6

1X
n=1

1

9n(2n� 1)
:

These relatively simple new examples all arose in

our work not from PSLQ numerical experiments,

but from a certain form for a speci�c polylogarith-

mic construction. First one obtains a closed form,

involving base b and any positive integers d; c, for a

typical component of the P -form:

1X
n=0

1

bn

1

dn+ c

= �1

d
b
c=d

d�1X
a=0

e
�2�iac=d log

�
1� 1

b1=d
e
2�ia=d

�
;

which we call closed because the a sum is �nite. But

it is not the derivation (as foreshadowed in [Cran-

dall 1996]) of this result that presents di�culty. It

is what we do with this closed form that is the chal-

lenging epistemological issue. One success achieved

by symbolic processing is the formula

1X
n=0

1

b3n

�
b

3n+ 1
+

1

3n+ 2

�
= 1

3
b
2 log

b
2 + b+ 1

b2 � 2b+ 1
;

which di�ers from most other formulae thus far, in

that arbitrary bases b are here involved. Under Hy-

pothesis A, every style of logarithm on the right for

base b � 2 is normal to base b. Our procedure for

moving from the �nite, logarithmic sum to such re-

sults involved symbolic processing in the following

way. Since the a sum above is patently real, one may

split everything into real, imaginary parts and dis-

card the latter. Then one may exploit exact trigono-

metric evaluations to arrive at new relations. Some

selected examples of what this symbolic procedure

can uncover are the following. For the peculiar base

b = 55 we have

P
�
1; 55; 5; (0; 5; 1; 0; 0)

�
=

1X
n=0

1

55n

� 5

5n+2
+

1

5n+3

�

= 25

2
log

�
781

256

�57� 5
p
5

57 + 5
p
5

�p5�
:

This dampens the hope that a purely experimen-

tal mathematics approach (such as the use of PSLQ-

based numerics: see [Ferguson et al. 1999]) will re-

solve any polylogarithm form; indeed, to discover

the above example one would need to have in one's

basis of possible terms not only quadratic surds as

coe�cients but also logarithms of such surds. By

certain manipulations on the c-index of the logarith-

mic a-sum one can establish other relations such as

the following, valid for integer m � 2:

P
�
1;mm

;m; (mm�2
;m

m�3
; : : : ;m; 1; 0)

�

=

1X
n=0

1

mmn

m�1X
c=1

m
m�1�c

nm+ c
= m

m�2 log

�
m

m � 1

(m� 1)m

�
:
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It is this formula that yields, for m = 10, our

aforementioned expansion for log((1010�1)=910). By
adjusting the weights of the partial fraction compo-

nents, one may also arrive at some obscure tan�1

evaluations. We have given one of the simpler cases

(for tan�1(1=2)); yet one can also derive

P
�
1; 33; 3; (3;�1; 0)

�
=

1X
n=0

1

27n

�
3

3n+1
� 1

3n+2

�

= 6
p
3 tan�1

p
3

7
;

as well as tan�1 forms such as a curious construct

that involves quartic irrationals:

P
�
1; 55; 5; (53;�52; 5;�1; 0)

�

= 2 � 513=4
�

1p
�
tan�1

�51=4p
�

233� 329
p
5

5938

�

+
p
� tan�1

�51=4p
�

939 + 281
p
5

5938

��
:

Whatever be the implications of such machina-

tions, this construct is, on Hypothesis A, either ra-

tional (unlikely) or normal to base 5.

6. CONNECTION WITH PSEUDORANDOM NUMBER
GENERATORS

We revisit once again what has been our canonical

constant for present purposes, namely � = log 2. As

in equation (1{4), we can write

f2n log 2g

=

� 1X
k=1

2n�k

k

�
mod 1

=

� nX
k=1

�2n�k mod k

k

�
mod 1 +

1X
k=n+1

2n�k

k

�
mod 1

= (xn + tn) mod 1;

where xn and tn denote the two sums as shown.

Recall that our proof of Theorem 3.1 (and perforce,

Theorem 1.1) depends on the fact that tail terms

such as tn vanish as n ! 1. In this light, the

sequence x can be considered to be a pseudorandom

number generator (PRNG), with values in [0; 1):

xn =

�
2n�1 mod 1

1
+

2n�2 mod 2

2

+
2n�3 mod 3

3
+ � � �+ 1

n

�
mod 1:

(The �rst term vanishes; we include it only for no-

tational completeness.) One can think of this as a

cascaded PRNG, in which an ever-increasing num-

ber of distinct linear congruential PRNGs, namely

the terms (2n�m mod m)=m, are summed together

mod 1. We might then attempt to characterize the

behavior of the sequence (xn) in terms of the gen-

erator's properties. For example, we can investigate

the period of this type of cascaded generator.

There are di�culties with this approach, not the

least of which is the fact that a theory of cascaded

PRNGs is not commonly discussed, and upon pre-

liminary investigation it is evident that open prob-

lems abound. For one thing, there are questions

about �xed sums of PRNGs that are yet open, such

as the precise statistics of the sum of just two stan-

dard PRNGs. Moreover, whereas for �xed, large n

the initial terms corresponding to (2n�m mod m)=m

may well be on their way into stable statistical cy-

cles, the latter terms ending 4=(n�2) + 2=(n�1) +
1=n are \just getting started," as it were. So the

cascaded PRNG does, in some sense, continue to

\seed itself" as n increments. These di�culties may

be insurmountable. Nevertheless, some partial re-

sults pertaining to random generators are obtained

in [Bailey and Crandall 2001], where we investigate

a statistical picture as a kind of complement to the

present, dynamical one.

7. CONCLUSIONS AND OPEN PROBLEMS

We have outlined above what we believe to be some

new approaches to the age-old question of the sta-

tistical randomness of the digits in the expansions

of several well-known mathematical constants. We

acknowledge that our analysis may have raised more

questions than it has answered, and we do not ex-

pect that the open hypotheses and conjectures will

be quickly or easily resolved. We only hope that

these results will stimulate further research in the

�eld and lead to a greater understanding of the is-

sues. Here is a sampling of the open problems in

this arena:

1. Is there a natural, or even believable, generaliza-

tion of the perturbation function rn in Hypothesis

A? We saw at the end of Section 3 that the par-

ticular decay rate of rn does not have an obvious

connection with the normality properties of the as-
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sociated constants. This subject is taken up further

in [Bailey and Crandall 2001].

2. Is there a way to connect the dynamical picture,

as embodied in Hypothesis A and our various obser-

vations thereupon, with the celebrated Weyl theo-

rem that (xn) is equidistributed if and only if

lim
N!1

1

N

N�1X
n=0

e
2�ihxn = 0

for every integer h 6= 0? That the xn contain powers

b
n for base b prevents any easy manipulation of the

exponential sum.

3. How does one bring to bear all of the historical

achievements from ergodic theory and the theory of

chaotic-dynamical maps? We have barely touched

upon a few isolated connections. Everything from

Lyapunov exponents to fractal dimension has, let us

say a priori, a possible role. Along this line, J. La-

garias [2001] has recently demonstrated intriguing

connections between our theory, ergodic theory, the

theory of G-functions and a conjecture by Fursten-

berg.

4. Can one develop a satisfactory theory of \Fergu-

son anomalies," namely those instances in which a

generalized polylogarithm series has a rational sum,

and yet elementary telescoping does not occur?

5. Can we obtain formal bounds on the lengths of

periods produced by cascaded PRNGs, even for the

special case of log 2? Can we obtain further results

on the statistics of PRNG sequences, such as limits

on the deviations of frequencies of digit strings from

their expected values? Again this is touched upon

in a companion paper [Bailey and Crandall 2001].

6. Is there cryptographic signi�cance to the present

notion of digit randomness? It is well known in cryp-

tographic circles that chaos generators are highly

(and rightfully) suspect as random generators, and

also that linear-congruential generators have been

\broken" (in fact, many polynomial-recursive gener-

ators have been broken as well). Still, do we not be-

lieve that the hexadecimal digits of � should be cryp-

tographically secure (given an unknowable starting

position, say), and if yes, then does not Conjecture

3.1 imply that a fairly simple dynamical map should

produce secure digits? We do admit that in this re-

gard one must recognize precision issues; i.e., to go

very far out in a � expansion, nonlinear|albeit ef-

�cient in the sense of the BBP algorithm|work

must be expended. Still, one might contemplate

the notion of taking the rational dynamical iterates

xk and reducing both numerator and denominator

modulo p for large prime p, in this way maintaining

linear control over precision for all iterates. Then

again, one could \seed" such a cryptographic gen-

erator with an adroitly obscure choice of rational

perturbation rk, and so on.
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